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Abstract

Current neuroimaging acquisition and processing approaches tend to be optimised
for quality rather than speed. However, rapid acquisition and processing of neuroim-
aging data can lead to novel neuroimaging paradigms, such as adaptive acquisition,
where rapidly processed data is used to inform subsequent image acquisition steps.
Here we first evaluate the impact of several processing steps on the processing time
and quality of registration of manually labelled T4-weighted MRI scans. Subsequently,
we apply the selected rapid processing pipeline both to rapidly acquired multicontrast
EPImix scans of 95 participants (which include T4-FLAIR, T,, T>*, T2-FLAIR, DWI and
ADC contrasts, acquired in ~1 min), as well as to slower, more standard single-
contrast T,-weighted scans of a subset of 66 participants. We quantify the corre-
spondence between EPImix T;-FLAIR and single-contrast T,-weighted scans, using
correlations between voxels and regions of interest across participants, measures of
within- and between-participant identifiability as well as regional structural covari-
ance networks. Furthermore, we explore the use of EPImix for the rapid construction

of morphometric similarity networks. Finally, we quantify the reliability of EPImix-
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1 | INTRODUCTION

An MRI scanner can be used to acquire a range of different contrasts,
which provide complementary information and are sensitive to dif-
ferent pathophysiologies (Cercignani & Bouyagoub, 2018). Currently,
multimodal MRI scanning involves specifying a sequence of contrasts
prior to data acquisition and in research contexts, acquiring the same
sequence for each individual. In a clinical context, the selection of
contrasts is guided by factors such as clinical history, cognitive and
neurological examinations, and symptoms (Camprodon &
Stern, 2013). However, the optimal sequence of contrasts and/or
parameters for each contrast may depend on the anatomical or phys-
iological abnormalities specific to the individual patient or be specific
to a given pathology, and thus may not be known a priori. As an alter-
native approach, it was recently proposed that data could be
analysed as it is being acquired, with the near-real-time results used
2019). This

approach was illustrated using three simulated scenarios, including

to determine subsequent acquisition steps (Cole et al.,

(a) tailoring the resolution and/or field of view (FoV) of a structural
scan to detect stroke, (b) adaptively acquiring multimodal data to
classify a known outcome variable using a decision tree, and
(c) adaptively searching across multiple MRI modalities using Bayes-
ian optimisation

to detect abnormality. However, adaptive

derived data using test-retest scans of 10 participants. Our results demonstrate that
quantitative information can be derived from a neuroimaging scan acquired and
processed within minutes, which could further be used to implement adaptive multi-

modal imaging and tailor neuroimaging examinations to individual patients.

EPImix, fingerprinting, identifiability, morphometric similarity, MR, reliability, structural

acquisition is yet to be implemented practically. One prerequisite to
2019) and imple-

ment adaptive acquisition in practice is the development of rapid

progress beyond simulated scenarios (Cole et al.,

analysis pipelines for multiple MRI modalities, enabling data to be
processed in near-real-time.

We propose to capitalise on EPImix—a recently developed multi-
contrast sequence which acquires six contrasts (T4-FLAIR, T,, T*, Tp-
FLAIR, DWI, ADC), at 0.975 x 0.975 x 3 mm resolution, in ~1 min
(Skare et al., 2018). A multicontrast sequence such as EPImix, or other
similar rapid multicontrast sequences (Polak et al., 2020), is well suited
to be the first sequence in an adaptive acquisition run, rapidly provid-
ing an overview of neuroanatomy across multiple contrasts. EPImix
contrasts have previously been compared to high-quality, single-
contrast sequences to evaluate their suitability for qualitative disease
identification and categorisation by trained radiologists, and have
shown comparable diagnostic performance to routine clinical brain
MRI (Delgado et al., 2019; Ryu et al., 2020). However, there have
been no quantitative comparisons of EPImix and corresponding
single-contrast scans.

Here, we explore rapid image processing pipelines for the EPImix
sequence, as well as for a single-contrast T;-weighted (T1-w)
sequence, and use the rapidly processed scans to quantitatively com-

pare EPImix and standard T;-w scans (Figure 1c). We first optimise a
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Overview of analysis steps. (a) A rapid processing pipeline for T1-w scans was evaluated using the manually labelled Mindboggle

dataset (Klein & Tourville, 2012; for details, see Figure 2). (b) The pipeline was used to process T4-FLAIR scans derived from the rapid multicontrast
EPImix sequence (Skare et al., 2018) as well as single-contrast (IR-FSPGR) T,-w scans. (c) Jacobian determinants and tissue intensities derived from
both types of T4-w scan were compared using several methods, including correlation (across participants), inter-individual identifiability, and
structural covariance networks. (d) Additionally, we explored using the EPImix sequence to construct morphometric similarity networks (MSNs;
Seidlitz et al., 2018). (e) Finally, we evaluated the test-retest reliability of all contrasts within the EPImix sequence, and of the derived MSNs
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rapid processing pipeline by evaluating the impact of several
processing steps on the processing time and on the quality of registra-
tion of manually labelled scans, using openly available data with man-
ual segmentations in both native and standard space (Klein &
Tourville, 2012). Subsequently, we quantify, in several ways, the over-
lap between selected EPImix contrasts and corresponding single-
contrast sequences. Finally, we demonstrate a novel quantitative
application of the multicontrast EPImix sequence, which could be use-
ful both in an adaptive imaging paradigm and beyond: the construc-

tion of morphometric similarity networks (MSNs; Seidlitz et al., 2018).

2 | METHODS

21 | Processing steps
While developing a rapid image processing pipeline, we considered
the following factors to guide selection of steps:

e Speed: Faster processing was preferred. We measured speed in
seconds. (Processing was run on an Apple Macbook Pro [2.2 GHz
Intel Core i7, 16 Gb 1,600 MHz DDR3 RAM], with no other user
processes running in parallel).

o Quality: Higher quality was preferred. We evaluated the quality of
steps up to and including registration by quantifying overlap
between source and target of manually labelled atlases (Klein
et al, 2009) (Klein &
Tourville, 2012).

o Automation: Fewer quality control steps and resulting re-running of

using the Mindboggle dataset

processing steps following manual interventions and/or changes of
parameters were preferred.

For the processing steps considered for inclusion in the pipeline,
see Table 1.

For registration of scans to standard space, we used ANTs
(Avants et al., 2008), due to its good performance in systematic evalu-
ations of registration algorithms (Bartel et al., 2019; Klein et al., 2009;
Nazib, Galloway, Fookes, & Perrin, 2018). We are aware that the com-

bination of processing steps listed in Table 1 is by no means

TABLE 1  Processing steps considered

Step Reason

Downsampling To save time (and potentially help extraction)

Bias field
correction

Commonly applied to improve registration

Brain extraction To improve registration

Registration To evaluate deviation from spatially normalised

group

Smoothing To remove noise in voxel-wise analyses

exhaustive, as different software suites could have been used for each
step, potentially differing in speed and quality of processing; instead,
the selected steps serve as a proof-of-principle evaluation of the pro-

posed approach (see also Section 4).

2.2 | Evaluating the speed and quality of
registrations

We evaluated the quality of registrations as well as the effect of any
prior pre-processing steps using the Mindboggle dataset (Klein &
Tourville, 2012), which contains T;-w scans of 101 healthy partici-
pants manually labelled according to the Desikan-Killiany-Tourville
(DKT) protocol (31 cortical regions per hemisphere). The dataset con-
tains both T4-w scans and manual DKT atlas labels in both native and
MNI152 spaces. These manual labels have previously been used as a
gold standard in evaluations of processing tools (e.g., Henschel
et al,, 2020; Tustison et al., 2014; Velasco-Annis et al., 2017). We
used the non-skull-stripped T4-w scans as initial input into our
processing pipelines as brain extraction is one of the processing steps
under evaluation.

We first used the native space T1-w scan to estimate registration
parameters to MNI152 space (following any optional pre-processing
steps; Figure 2a). Subsequently, we applied the registration step to
the manual native space DKT atlas labels (Figure 2b). Finally, we quan-
tified the overlap of the transformed atlas labels with the manual
MNI152 space atlas labels using the Dice coefficient (Figure 2c), equal
to twice the number of overlapping voxels divided by the sum of the

number of voxels in each set; for voxel sets {A} and {B}:

_2.|AnB]

p==-"'"""""1
|Al+[B]

(1)

We calculated the Dice coefficient both for all atlas regions across the
brain at once, and for individual atlas regions.

We evaluated the above steps (Table 1) in a sequential manner,
as follows. (As the options evaluated at each step depend on results
obtained in the previous step, we report the outcome of each step

here; for details underlying our selection, see Section 3. Unless

Options Algorithm (reference[s])
1/2/3 mm ANTs ResamplelmageBySpacing (Avants et al., 2011;
Avants, Epstein, Grossman, & Gee, 2008)

Yes/no ANTs N4BiasFieldCorrection (Tustison et al., 2010)

Yes/no FSL BET (Smith, 2002)

SyN/b-spline ANTSs antsRegistrationSyNQuick.sh (Avants
SyN et al,, 2008, 2011)

2/4/6 mm Python nilearn nl.image.smooth_img (Abraham,
FWHM Pedregosa, Eickenberg, & Gervais, 2014)

Note: For each step, we list the reason for consideration, the evaluated options and the algorithm used, including relevant references.
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otherwise specified, we used the ANTs SyN registration as
implemented by default in antsRegistrationSyNQuick.sh as the main

processing step.)

1. We first evaluated the effect of spatial resolution, including 1 mm
(native Mindboggle data resolution), 2 mm, and 3 mm isotropic.
We downsampled both the T4-w scans and DKT atlases in both
native and standard space, before applying the ANTs SyN algo-
rithm for registration (Avants et al., 2008).

2. Following selection of the resolution (2 mm), we considered the
effect of bias field correction. We compared the quality and speed
of ANTSs SyN registration with and without ANTs N4 bias field cor-
rection (Tustison et al., 2010).

3. We next considered the impact of brain extraction on the output
of the previous steps (2 mm with bias field correction). We com-
pared the default non-skull-stripped registration to the application
of FSL BET (Smith, 2002) for skull-stripping. (We used default BET
parameters, except for the fractional intensity threshold, which
was set to 0.4 based on an initial test evaluation using a subset of

scans.)

native space

\ a) (pre-process)
Tr-w , ! + calculate

scan registration
b)

DKT Apply

atlas . registration

MNI template

4. Finally, we applied ANTs spline-based SyN registration to the out-
put of previous steps (2 mm with bias field correction and without
skull-stripping) to compare speed and quality to standard ANTs
SyN (Avants et al., 2008).

+ Additionally, we evaluated a reference pipeline, optimised for quality
rather than speed. This consisted of 1 mm isotropic resolution

and the slower

images, ANTs N4 bias field correction

antsRegistrationSyN.sh script, optimised for quality.

As a quality control step, the T4-w scan in MNI152 space (i.e., the
output of Figure 2a) was visually assessed to ensure a successful reg-
istration. For details of the settings used for each processing step in
each evaluated pipeline, see Table 2.

We note that not all combinations of processing steps were sys-
tematically evaluated. Moreover, our aim was not to find the ‘optimal’
processing pipeline, but rather to consider trade-offs in processing
speed and quality, to identify a combination of processing steps which
optimises both parameters (i.e., ‘good enough and fast enough’). As
we argue in further detail in Section 4, we deliberately avoided com-

bining speed and quality into a single evaluation metric, as the relative

MNI space

() Quantify

overlap

FIGURE 2  Using manual Desikan-Killiany-Tourville (DKT) atlas labels from the Mindboggle dataset to quantitatively evaluate the quality of
registration (and pre-processing steps). (a) The processing pipeline (up to and including registration) is applied to the native-space T1-w scan to
transform it to MNI152 space and to estimate registration parameters. (b) The registration (calculated in step a) is applied to the native-space
DKT atlas. (c) The Dice coefficient is used to quantify the overlap, in MNI152 space, between the atlas labels which have been transformed from
native space (in step b) and the manual atlas labels released with the Mindboggle dataset (Klein & Tourville, 2012)

Pipeline Resolution Bias field corr. Brain extraction
1 1/2/3 mm Off Off

2 2 mm On/off Off

3 2 mm On On/off

4 2 mm On Off

Final 2 mm On Off

+ Reference 1 mm On Off

TABLE 2 Evaluated pipelines

Registration

SyN

SyN

SyN

SyN/b-spline SyN
SyN

‘slow’ SyN

Note: Settings used for each step while evaluating pipelines in a sequential manner. Cell colour indicates
evaluation status: yellow cells indicate steps under evaluation, orange cells indicate steps not yet
evaluated, and green cells indicate evaluated steps, where an option has been selected. (Steps within the

reference pipeline were not evaluated sequentially.).
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importance of these two criteria cannot easily be quantified. Instead,
we believe that these two quantitative measures should serve to
guide the construction of a rapid processing pipeline on a case-by-

case basis.

2.3 | Processing of EPImix and corresponding
single-contrast T1-w scans

Following the selection of a rapid processing pipeline (2 mm scans
with bias field correction and standard SyN registration, see also
Section 3), we applied it to the EPImix scans, and corresponding T-w
single-contrast scans. We focused on the Ti-w single-contrast
sequence due to data availability.

We included scans collected on the same scanner (General Elec-
tric MR750 3.0T, Waukesha, WI) across three different studies con-
ducted on healthy volunteers at the Centre for Neuroimaging
Sciences, King's College London's Institute of Psychiatry, Psychology &
Neuroscience. The studies received ethical approval from King's Col-
lege London's Psychiatry, Nursing and Midwifery Research Ethics
Committee (KCL Ethics HR-18/19-9268, HR-
18/19-11058, and HR-19/20-14585). All participants gave written
informed consent to take part in the study.

References:

EPImix scans were collected from 95 participants (48 female,
47 male; age median [first, third Quartile] (Md [Q4,Qa3]) = 25 [22,29]
years; Figure S1), consisting of six contrasts (T,*, T,o-FLAIR, T,, T4-FLAIR,
DWI, ADC) acquired at 0.975 x 0.975 x 3 mm resolution. For details
regarding specific acquisition parameters, see Supporting Information.
The EPImix sequence includes an on-scanner motion correction step;
the motion corrected images were used for further analyses. For further
details regarding the EPImix sequence, see Skare et al. (2018). Addition-
ally, for 10 participants, a second EPImix scan was acquired during the
same session to investigate test-retest reliability.

Of the participants scanned with the EPImix sequence, 66 were
additionally scanned, within the same session, with an IR-FSPGR T4-
weighted sequence (33 female, 33 male; age Md [Q4,Qs] = 25
[23,29.75] years; Figure S1). Of these, 12 were scans acquired at
1x1x1mm resolution, and 54 were scans acquired at
1.05 x 1.05 x 1.2 mm resolution. For details regarding specific acqui-
sition parameters, see Supporting Information.

Note that as both the EPImix T4-FLAIR contrast and the single-
contrast IR-FSPGR sequence are Tq-weighted, we hereafter refer to
both as such (as well as simply ‘T1-w’).

When applying the previously identified rapid processing pipeline
to EPImix scans, we omitted the downsampling step (to 2 mm isotro-
pic resolution), as options for modifying the EPImix voxel resolution of
0.975 x 0.975 x 3 mm during acquisition are limited, and the ‘native’
EPImix rapid processing
(Md [Q4,Q3] = 32 [31,33] s across participants; see also Figure 4).

Instead, we registered EPImix T,-w scans directly to a 2 mm isotropic

resolution resulted in sufficiently

MNI template, and subsequently applied the same transformation to
the remaining EPImix contrasts. Furthermore, following registration of

the single-contrast and EPImix T4-w scans to MNI space, we extracted

the logarithm of the Jacobian determinant of the ANTs SyN transform
(combining the affine and non-linear warp components) to serve as an
additional quantitative comparison of EPImix and corresponding

single-contrast acquisitions (henceforth referred to as log-Jacobian).

2.4 | Effects of resolution and spatial smoothness
on the correspondence between EPImix and single-
contrast T1-w scans

To evaluate the impact of spatial resolution on the correspondence
between EPImix and single-contrast T,-w scans, as well as the test-
retest reliability of EPImix contrasts and derived measures, we down-
sampled voxelwise data within regions of interest (ROls). To investi-
gate the impact of ROI size within the atlas used, we used both a
high-resolution multi-modal parcellation (MMP) of cortex into
360 ROIs, constructed by Glasser et al. (2016), as well as its down-
sampled low-resolution version into 44 larger regions. These two
atlases are hereafter referred to as ‘MMP high-resolution’ (or ‘MMP
high-res.’) and ‘MMP low-resolution’ (or ‘MMP low-res.’), respec-
tively. For details, see Figure S2.

Due to the reduced FoV of EPImix scans, resulting in missing por-
tions of the inferior temporal and/or superior parietal lobe in certain
participants, we only included voxels present (i.e., non-zero) in at least
80% of EPImix scans in voxelwise analyses (i.e., 76/95 participants).
For regional analyses, we only included ROIs where at least 80% of
voxels contained non-zero values in at least 80% of participants. This
resulted in analyses using 297/360 regions from the Glasser
et al., 2016 atlas, and 32/44 regions from its downsampled version.
For details, see Figure S3.

Regional values were generated by calculating the median values
of unsmoothed voxel-wise EPImix contrasts, single-contrast T;-w
scans and log-Jacobians within atlas masks registered to the same
MNI space, excluding zero-valued voxels. We subsequently per-
formed analyses at the spatial resolution of voxels (both spatially
smoothed and unsmoothed), 297 and 32 ROls, as described below.
Additionally, voxel-wise analyses were performed and/or visualised
using voxels within a mask defined by the MNI brain (dilated once), as
well as cortical grey matter (GM) voxels (defined as voxels belonging
to one of the regions of the cortical MMP atlases used).

Furthermore, to evaluate the impact of spatial smoothness on the
correspondence between EPImix and corresponding single-contrast
scans, we smoothed voxelwise EPImix and single-contrast T1-w scans
using three different Gaussian kernels—2, 4, and 6 mm full-width at
half-maximum (FWHM; using Python nilearn; Abraham et al., 2014).

2.5 | Correspondence between EPImix and single-
contrast scans

We quantified correspondence between matching EPImix and single-
contrast T1-w scans in several ways. (All instances of correlation refer

to Spearman's correlation coefficient p.).
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To evaluate the extent of spatial correspondence between EPImix
and single-contrast scans, we correlated corresponding log-Jacobians
and T4-w intensities at the voxel and ROI level, across subjects.

Further, to determine whether the correspondence between
matching EPImix and single-contrast T,1-w scans is higher within than
between participants, we calculated measures of ‘differential
identifiability’ (Amico & Goni, 2018). This is defined as the median
correlation of participants' scans from one modality to their own scan
from the other modality (i.e., within-participant correlation; pyitin),
modalities of non-

minus the median correlation between

corresponding  participants  (i.e,, between-participant correla-

tion; pbetween):

laite = Md(pyithin) — Md(ppetween) (2)

We additionally defined an individual index of differential identifiability,
as the fraction of times that between-subject scan correlations are
smaller than within-subject scan correlations. We calculated this measure
twice for each participant and spatial resolution, to quantify both the
individual identifiability of a single-contrast T,-w scan relative to EPImix
T1-w scans, and of an EPImix T1-w scan relative to single-contrast T,-w
scans. This individual measure of identifiability is related to discriminabil-
ity, as defined by Bridgeford et al. (2020). We note that while (individual)
identifiability based on log-Jacobians is desirable as these maps encode
inter-individual differences in brain size and shape, the interpretation of
identifiability based on T1-w scan intensity is more complex (for details,
see Section 4).

When correlating values at the regional level, we used a spatial per-
mutation test to construct realistic null models of spatial correspon-
dence. Specifically, these null models test whether correspondence
between two cortical maps might be driven by spatial autocorrelation
and hemispheric symmetry of these maps (null hypothesis; Ho), or
whether there is inherent spatial correspondence over and above these
potential confounds (alternative hypothesis; H,). For details regarding
the generation of regional spatial permutations, see (Markello &
Misic, 2020; Vasa et al., 2018) and Supporting Information.

As a final comparison between contrasts, we used regional data from
EPImix and single-contrast log-Jacobians as well as T,-w intensities to
construct structural covariance matrices, by cross-correlating median
regional values across subjects (Alexander-Bloch et al, 2013;
Evans, 2013). We quantified correspondence between the upper triangu-
lar parts of the structural covariance matrices using correlation, and vis-
ualised networks from both modalities using (thresholded) network
diagrams. We further contextualised the correspondence between net-
works using a mapping of high-resolution MMP atlas regions to intrinsic
connectivity networks derived by Yeo et al., 2011, previously defined in

Vasa et al.,, 2020 (for details of the mapping, see Supporting Information).

2.6 | EPImix MSNs

We further explored the possibility of constructing MSNs (Seidlitz
et al, 2018) from EPImix, by correlating regional contrast values

between pairs of regions within subjects. EPImix-derived MSNs pro-
vide a proxy measure of connectivity, which could serve both to com-
plement measures of regional anatomy in driving the adaptive imaging
process, and as a rapid brain network estimate in other applications.
We used seven maps per participant to construct EPImix-derived
MSNs, including six EPImix contrasts as well as the log-Jacobian
derived from transforming EPImix T4-w scans to MNI space. Regional
values were normalised within each participant and contrast using the
number of absolute deviations around the median, a non-parametric
equivalent of the Z-score (Leys, Ley, Klein, Bernard, & Licata, 2013);

for a vector of regional values x:

_ x—Md(x)
Znon—par = WD(X) (3)

where Md() corresponds to the median, and MAD() to the median
absolute deviation. Finally, normalised regional values were correlated
using Spearman's p across maps (contrasts), within participants, to cre-
ate individual MSNs.

We compared EPImix-derived MSNs to conventional MSNs,
derived from FreeSurfer reconstructions of single-contrast Ti-w
scans. MSNs have previously been reconstructed from 10 morphomet-
ric features derived from high-resolution multi-modal MRI data
(Seidlitz et al., 2018), as well as five features derived from single-
contrast T4-w scans (King & Wood, 2020). We used the FreeSurfer
recon-all command to reconstruct cortical surfaces (Fischl, Sereno, &
Dale, 1999), followed by visual quality control; one of the 66 partici-
pants with both EPImix and single-contrast T,-w scans available was
excluded due to a failed surface reconstruction, resulting in the use of
65 participants for this analysis. Subsequently, seven FreeSurfer-
generated quantitative measures were extracted from each region of
both the high-resolution and low-resolution MMP atlases used: sur-
face area, GM volume, cortical thickness, mean curvature, Gaussian
curvature, folding index, and curvature index. Each measure was
normalised using the same non-parametric approach as EPImix MSNs
(Equation (3)), and individual MSNs constructed using Spearman's p
across regional normalised measures. We then compared EPImix-
derived and standard MSNs using Spearman's p correlations—of
group-averaged MSNs (across all edges, and within and between
intrinsic connectivity networks), as well as within individual
participants.

Finally, to explore the value of EPImix MSNs, we quantified the
variance in participant age and sex explained by MSN edges using lin-
ear regression, in the full sample of (95) participants with EPImix
scans. The explained variance score was calculated within five-fold
age-stratified cross-validation, with a resulting median value (across
folds) calculated for each MSN edge.

2.7 | Test-retest reliability of EPImix scans

We quantified test-retest reliability of EPImix scans using 10 within-

session test-retest EPImix scans. We quantified test-retest reliability
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using the intraclass correlation coefficient (ICC); specifically, we used
the one-way random effects model for the consistency of single mea-
surements, that is, ICC(3,1), hereafter referred to as ICC (Chen
et al, 2018). We calculated the ICC using voxel-wise data, ROI-
averaged data and MSN edges.

3 | RESULTS

3.1 | Evaluation of a rapid processing pipeline

We sequentially evaluated the impact of four processing steps on the
speed and quality of registration, using the Mindboggle-101 dataset
(Klein & Tourville, 2012). At each step, we recorded the processing
time and the quality of overlap (between our custom registrations of

DKT atlas labels and manual labels released with the Mindboggle

dataset) using the Dice coefficient. These two measures are intended
to inform (rather than determine) the selection of processing steps
(see also Section 4).

We first evaluated the impact of spatial resolution of the data. An
isotropic resolution of 1 mm results in the most accurate registration,
but is potentially too slow to be run in real-time (processing time Md
[Q1,Qs] = 129 [127,131] s). The processing of the images with 2 mm
isotropic resolution is sufficiently fast (Md [Q4,Qs] = 18 [18,19] s) and
was therefore chosen (Figure 3a). We next inspected the impact of
bias field correction (on 2 mm isotropic resolution scans), using the
ANTSs N4 algorithm. We found that bias field correction improved reg-
istration quality at a relatively low time cost (Md [Q1,Q3] = 24 [24,25]
s) and was therefore included as a processing step (Figure 3b). Subse-
quently, we explored the application of a brain extraction algorithm
(to the 2 mm isotropic resolution scans following bias field correction)

using FSL BET. Brain extraction results in a marginally faster

Processing time Quality
(a)
1 mm SyN —H —_— T
. <1070 Fp<1071
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FIGURE 3 Evaluation of processing time and quality of registration using the Mindboggle dataset. The effect of four processing steps was

evaluated sequentially; for each step, both processing time and quality were taken into account to select one of the options, before proceeding to
the next step. p-values adjacent to neighbouring raincloud plots correspond to the (paired) Wilcoxon signed-rank test between corresponding
data (testing whether evaluated methods differ significantly in processing time or registration quality [H4], or whether there is no statistical
difference between these values [Ho]). (a) Spatial resolution. (b) Bias field correction. (c) Brain extraction. (d) B-spline SyN registration. (e) An
additional reference pipeline was evaluated, to benchmark any reduction in quality resulting from optimising steps a-d for speed. p-values were
not corrected for multiple comparisons, due to the sequential nature of evaluated steps. We note that even stringent multiple comparisons
correction has no qualitative impact on the results. For Bonferroni-corrected p-values, as well as median differences in both processing time and

quality between pairs of compared pipelines, see Table S1
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FIGURE 4 Processing time for EPImix and single-contrast T1-w
scans. The p-value corresponds to the (unpaired) Mann-Whitney

U test (testing whether processing times differ for EPImix and single-
contrast T1-w scans [H4], or whether there is no statistical difference
between these values [Ho]). Note that a small amount of jitter was
added to data to better distinguish the distribution of integer-valued
data-points

registration (Md [Q4,Qs] = 21 [20,23] s), but with no gain in quality
(Figure 3c). Combined with the fact that brain extraction might fail
and need to be re-run with alternative parameters, it was not included
in our processing pipeline. Finally, we evaluated the use of ANTSs b-
spline SyN registration (instead of the ‘standard’ ANTs SyN algo-
rithm). This results in a noticeably slower registration, without a gain
in quality (Md [Q4,Qs] = 41 [40,42] s); therefore, the standard ANTs
algorithm was preferred (Figure 3d).

To benchmark the potential loss in quality resulting from the
above selection of a fast processing pipeline, we evaluated an addi-
tional ‘reference’ pipeline, solely optimised for quality. This consisted
of 1 mm scans, ANTs N4 bias field correction and registration using a
slower (but more accurate) version of the ANTs SyN algorithm. As
expected, this pipeline was far slower (Md runtime [Q4,Q3] = 39.9
[39.4,40.3] min), and only resulted in a marginal increase in registra-
tion quality (Figure 3e).

For each processing pipeline, we additionally calculated the Dice
coefficient for individual regions of the DKT atlas. This showed a rela-
tively spatially homogenous impact of processing steps on registration
quality overall; for details, see Figure S4.

We next applied the selected processing pipeline, consisting of
ANTs N4 bias field correction and ANTs SyN registration, to EPI-
mix and corresponding single-contrast T4-w scans (the EPImix
scans were not downsampled but registered to a 2 mm isotropic
MNI template brain directly; the single-contrast T,-w scans were
downsampled to 2 mm isotropic resolution prior to registration).
Application of the selected processing pipeline to EPImix and
single-contrast T4-w scans resulted in rapid processing of both
acquisitions (EPImix processing time Md [Q4,Q3] = 32 [31,33] s,
single-contrast T,-w processing time Md [Q4,Q3] = 30 [29,31] s;
Figure 4).

3.2 | Correspondence between EPImix and single-
contrast T1-weighted scans

We evaluated correspondence between EPImix and single-contrast
scans using both log-Jacobians extracted from transformations of
T1-w scans to MNI standard space, and T1-w scan intensities. In the

main text, we report results of log-Jacobian comparisons as well as

summary results for T1-w intensities; full details for comparisons of
T4-w intensities are reported in Supporting Information.

We restricted analyses of EPImix and single-contrast T,-w scans
to voxels with coverage in at least 80% participants
(199'870/269'462 = 74.2% voxels in the MNI brain mask, and
64'370/78'247 = 82.3% voxels in the cortical GM mask), and regions
where at least 80% voxels were non-zero in at least 80% participants
(297/360 = 82.5% regions in the high-resolution MMP atlas,
32/44 = 72.7% regions in the low-resolution MMP atlas). For details
regarding participant overlap at voxels and regions, see Figure S3.

When evaluating correspondence between EPImix and single-
contrast T4-w scans, we first calculated the correlation, across partici-
pants, of the log-Jacobian value at each voxel or region. Most correla-
tions were strong and positive, including Md(p) [Q4,Qs] = 0.70
[0.62,0.77] at the voxel level (0.70 [0.62,0.76] in the GM), 0.75
[0.68,0.81] at the level of regions of the high-resolution MMP atlas,
and 0.83 [0.8,0.87] for the low-resolution atlas (Figure 5). Most or all
correlations were statistically significant (prpr <.05 at >99% voxels for
both brain voxels and GM voxels, and for all [100%] regions of both
the high- and low-resolution MMP atlases). Analogous comparisons
using T4-w intensities yielded lower correlations, including Md(p)
[Q4,Q3] = 0.17 [0.05,0.29] within all brain voxels and 0.22 [0.11,0.32]
within GM voxels, as well as 0.19 [0.13,0.26] within ROIs of the high-
resolution MMP atlas and 0.16 [0.12,0.19] for regions of the low-
resolution MMP atlas (Figure S5). Far fewer of these correlations were
significant (pppr <.05 at 20% brain voxels and 31% GM voxels, and
for only 3% regions of the high-resolution MMP atlas and no [0%)]
regions of the low-resolution MMP atlas).

We next quantified the within- and between-participant corre-
spondence of EPImix and single-contrast log-Jacobians (Figure 6a).
We calculated global identifiability, as the difference of the median
between-participant correlation and median within-participant corre-
lation (Figure 6b; relevant parts of the correlation matrices are
depicted in Figure 6c). Differential identifiability was similar across
types of data used, with highest identifiability at the level of low-
resolution regions (l4i¢ = 0.49-0.16 = 0.33), closely followed by high-
resolution regions (lgi¢r = 0.48-0.19 = 0.29), brain voxels (l4i¢ = 0.38-
0.11 = 0.27), and finally GM voxels (lgs = 0.40-0.14 = 0.26)
(Figure 6b). For regional data, we additionally used a null model relying
on spherical ‘spin’ permutation of cortical regions to account for spa-
tial autocorrelation of the data when quantifying spatial correspon-
dence between Within
52/66 = 78.8% of within-participant correlations survived the FDR-
corrected permutation test, compared to 406/4290 = 9.5% of

between-participant correlations. Within the low-resolution atlas, no

contrasts. the high-resolution atlas,

within- or between-participant correlations survived this thresholding
procedure (Figure 6a). Finally, we calculated individual-level
identifiability, as the fraction of times that within-participant scan cor-
relations are higher than between-participant scan correlations, using
one of the contrasts as a reference (Figure 6d). For example,
identifiability of an individual EPImix T1-w scan is maximal (=1) when
the correlation between that scan and the same participants' single-

contrast T4-w scan is higher than all correlations to other participants'
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FIGURE 6 Participant identifiability across EPImix and single-contrast scans, using log-Jacobians. Between-participant correlations and
identifiability were investigated using four types of data, at three spatial resolutions (columns in a,b, rows in d): all brain voxels, cortical grey
matter voxels, regions of the high-resolution multi-modal parcellation (MMP) atlas, and regions of the low-resolution MMP atlas. (a) Spearman's
correlations between EPImix and single-contrast log-Jacobians, within and between participants. Cross-contrast correlations at the level of ROls
were benchmarked using a null model controlling for contiguity and spatial autocorrelation (upper triangular blocks). (b) Differential identifiability
of contrasts, defined as the difference between the median within-participant correlation (right/red y-axes) and the median between-participant
correlation (left/grey y-axes), as illustrated in c). (d) Individual identifiability, defined as the fraction of times that the within-participant correlation
is higher than between-participant correlations, either identifying the log-Jacobian of a single-contrast T4-w scan relative to log-Jacobians of
EPImix T;-w scans (EPImix T,-w ref.), or vice-versa (T,-w ref.). p-values correspond to the (paired) Wilcoxon signed-rank test between
neighbouring distributions (testing whether different spatial resolutions of data lead to differences in individual identifiability (H,), or whether

there is no statistical difference between these values (Ho))
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single-contrast T1-w scans. Individual identifiability was highly similar
when using EPImix T,-w scans and single-contrast T,-w scans as ref-
erence. In contrast with global differential identifiability, individual
participants were most identifiable at the level of brain voxels, with
high individual identifiability at the level of GM voxels and high-
resolution ROIs as well; low-resolution regions had comparatively
lower individual identifiability (Figure 6éd). Analogous analyses using
T1-w scan intensities yielded highest differential and individual
identifiability at the level of GM voxels (lgi¢ = 0.24; Md[ind. lgi¢] = 1),
with lower correspondence at other spatial resolutions; for details,
see Figure Sé.

We additionally inspected the effect of voxel-wise smoothing of
T1-w intensity data, using 2, 4, and 6 mm FWHM kernels. The effect
of smoothing was to reduce voxel-wise correspondence across sub-
jects (i.e., the analogue of Figure 5a,b), and to reduce differential
identifiability due to a greater increase in the magnitude of between-
participant correlations than within-participant correlations; for
details, see Figure S7.

For a summary of median within- and between-participant corre-
spondence, and global and individual identifiability across spatial reso-
lutions and types of data used (log-Jacobians and Ti-w intensities),
see Table 3.

3.3 | Correspondence of structural covariance
networks across contrasts

We next inspected the correspondence between structural covariance
networks, constructed by correlating log-Jacobians (or T1-w intensi-
ties) between all pairs of regions, across participants.

Structural covariance networks constructed using log-Jacobians
exhibited similar hallmarks of organisation to structural covariance

networks commonly constructed from regional cortical thickness or

GM volume data, such as strong long-range inter-hemispheric correla-
tions between homotopic regions (Figure 7). The upper triangular
parts of these matrices exhibited moderate correspondence between
acquisitions, both for the high-resolution atlas (Spearman's p = 0.41),
and the low-resolution atlas (Spearman's p = 0.46). Correspondence
varied across intrinsic connectivity networks (Md(p) [Q4,Qs] = 0.41
[0.28, 0.49]), with highest correlations within visual, somatomotor and
limbic networks (Figure S10). Conversely, structural covariance net-
works constructed using T4-w scan intensities showed lower corre-
spondence between acquisitions, particularly within the high-
resolution atlas; this was likely due to unusually high short-range cor-
relations clustered in the frontal cortex in the EPImix T;-w data (-
Figures S8 and S10).

3.4 | EPImix MSNs

As a unique application of the multicontrast EPImix sequence, we
explored the possibility of constructing MSNs (Seidlitz et al., 2018).
We constructed individual MSNs by correlating nonparametrically
normalised regional values of the six EPImix contrasts as well as the
log-Jacobian (seven regional features in total), between all pairs of
regions. For example, in the low-resolution MMP atlas, the left poste-
rior opercular cortex showed high morphometric similarity to the left
early auditory cortex (A1), but low similarity to the left posterior cin-
gulate cortex (Figure 8a). MSNs showed high positive correlations
between homotopic pairs of regions (Figure 8b).

We further compared EPImix-derived MSNs to standard MSNs
obtained from FreeSurfer reconstructions of single-contrast T,-w
scans, in 65 participants. The group-average MSNs showed weak cor-
respondence, both for the high-resolution atlas (Spearman's p = 0.21)
and for the low-resolution atlas (Spearman's p = 0.26). Correspon-

dence of edges within and between intrinsic connectivity networks

TABLE 3 Identifiability of log-Jacobians and T1-w intensities at different spatial resolutions
Md(pwitn)) Md((pbetw))
Log-Jacobian Voxels brain 0.38 0.11
Voxels GM 0.40 0.16
MMP high-res. 0.48 0.19
MMP low-res. 0.49 0.16
T41-w intensity Voxels brain 0.62 0.50
Voxels GM 0.47 0.23
MMP high-res. 0.61 0.43
MMP low-res. 0.78 0.66
T1-w GM smoothed 2 mm FWHM 0.50 0.26
4 mm FWHM 0.59 0.38
6 mm FWHM 0.64 0.49

[ Ind. Igi¢r T1-w ref. Md [Q4,Qs] Ind. Igi¢r Em ref. Md [Q4,Qs3]
0.27 1.0[0.98,1.0] 1.0[0.97,1.0]
0.24 1.0[0.98,1.0] 1.0[0.95,1.0]
0.29 1.0[0.97,1.0] 0.97[0.89,1.0]
0.33 0.94[0.82,0.98] 0.90[0.71,0.97]
0.12 1.0[1.0,1.0] 1.0[1.0,1.0]
0.24 1.0[1.0,1.0] 1.0[1.0,1.0]
0.19 1.0[1.0,1.0] 1.0[1.0,1.0]
0.12 0.91 [0.79,0.98] 0.88 [0.72,0.97]
0.24 1.0[1.0,1.0] 1.0[1.0,1.0]
0.21 1.0[1.0,1.0] 1.0[1.0,1.0]
0.16 1.0[1.0,1.0] 1.0[1.0,1.0]

Note: From left to right, columns correspond to: median within-participant correlation, median between-participant correlation, global identifiability,
individual identifiability with T,-w scans as reference, and individual identifiability with EPImix T4-w scans as reference. From top to bottom, blocks
correspond to log-Jacobians and T4-w intensities (with rows corresponding to spatial resolution), as well as the effect of smoothing voxel-wise GM T;-w

intensity maps (with rows corresponding to the width of the smoothing kernel).
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FIGURE 7  Structural covariance networks constructed from EPImix and single-contrast log-Jacobians. (a) Structural covariance networks
constructed using the high-resolution MMP atlas (297 regions). The diamond plot (top) is ordered according to regional membership of the seven
canonical intrinsic connectivity networks derived by Yeo et al. (2011). Network diagrams depict the strongest 0.3% correlations. (b) Structural
covariance networks constructed using the low-resolution MMP atlas (32 regions). Network diagrams depict the strongest 10% correlations. For
a comparison of high-resolution structural covariance within intrinsic connectivity networks, see Figure S10
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FIGURE 8 Morphometric similarity networks (MSNs) constructed from EPImix contrasts and log-Jacobians. (a) MSN construction. Seven

maps, including six EPImix contrasts and a log-Jacobian map (obtained from the warp of the T4-w contrast to MNI space) were used for network
construction. Median values of each map within each region of a high-resolution and a low-resolution atlas were calculated, before normalisation
(within participants, across regions) using a non-parametric equivalent of the Z-score (MAD, median absolute deviation; Md, median). Two
example correlations from the low-resolution atlas are shown: high morphometric similarity of left posterior opercular cortex to left early auditory
cortex (A1), and low morphometric similarity to the left posterior cingulate cortex. b) Average MSNs (across participants), constructed using the
high-resolution atlas (top; strongest 0.3% absolute correlations shown) and low-resolution atlas (bottom; strongest 10% absolute correlations
shown). For comparisons of MSNs derived from EPImix contrasts to conventional MSNs derived from FreeSurfer reconstructions of T1-w scans,
see Figures S9 and S10
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was variable; Md(p) [Q4,Qs] = 0.17 [0.12, 0.22]. Correspondence
within individual participants covered a range of (low) values, for both
atlases; high-resolution MMP Md(p) [Q;,Q3] = 0.085 [0.074, 0.10],
low-resolution MMP Md(p) [Q4,Qs] = 0.12 [0.076, 0.16]. For details,
see Figures S9 and S10B.

Finally, we explored the relationships of MSN edges to age and
sex using all 95 participants with EPImix scans. At each edge of both
the high-resolution and low-resolution MSN networks, we predicted
edge strength (correlation) as a function of age and sex, using age-
stratified five-fold cross-validation. We fitted each model to 80%
(76/95) participants, and used the remaining 20% (19/95) participants
to extract an explained variance score. Edge-wise median explained
variance reached maximal values of 0.35 for high-resolution MSN
edges, and 0.18 for low-resolution MSN edges.

3.5 | EPImix test-retest reliability

The final analysis of the study consisted in quantifying the test-retest
reliability of rapidly processed EPImix contrasts, log-Jacobians and
MSNs, using within-session test-retest data from 10 participants.
Reliability was consistent across levels of spatial resolution, including
voxels and ROls, and generally very high (Figure 9 and Table 4).
Among contrast maps, reliability was lowest for the ADC; all other
maps showed high reliability. MSN edges showed high reliability, with
a few exceptions. For median and quartile ICC values, see Table 4.

4 | DISCUSSION

4.1 | Rapid processing of MRI data

Using manually labelled scans from the Mindboggle dataset (Klein &
Tourville, 2012), we first evaluated the impact of several processing
steps on the processing time and quality of registration. The results
informed our choice of ‘minimal’ pre-processing pipeline, which
included N4 bias field correction and ANTs SyN registration of non-
skull-stripped scans at 2 mm isotropic resolution. This combination
of processing steps resulted in very fast processing (<1 min on a
typical computer) of both EPImix and single-contrast T4-w scans.
Notably, the quality of registration achieved by this fast processing
pipeline was only marginally lower than a far slower (~40-min) ref-
erence pipeline optimised for quality. In addition to the relevance
of these tools to novel acquisition paradigms such as adaptive mul-
timodal imaging (Cole et al., 2019), our systematic evaluation of
rapid processing steps should be informative for widespread stud-
ies of real-time functional MRI such as neurofeedback (Watanabe
et al, 2017) and neuroadaptive Bayesian optimisation (Lorenz
et al., 2017), where analysis pipelines rely on rapid processing of
structural scans.

We further demonstrated that EPImix scans processed using our
rapid pipeline showed high test-retest reliability. It would be interest-
ing, in future, to repeat these analyses using test-retest data acquired

during different sessions and/or at different scanner sites, for a more
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FIGURE 9 Test-retest reliability of rapidly-processed EPImix scans. Reliability was assessed using 10 within-session test-retest scans, for the
six EPImix contrasts and the log-Jacobian (JCB), at the level of voxels, and high- and low-resolution MMP atlases, as well as for morphometric
similarity networks (MSNs) at both atlas resolutions. Reliability was quantified using the one-way random effects model for the consistency of
single measurements, that is, ICC(3,1). (Note that the EPImix T,-FLAIR contrast is referred to as the EPImix T1-w contrast/scan throughout

the text.)
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TABLE 4 Test-retest reliability of

WILEY_L ®

values derived from 10 EPlmix scans ICC: Md [Q4,Q3] Voxels brain Voxels GM MMP high-res. MMP low-res.

Ty 0.97[0.93,0.99] 0.97 [0.93,0.99] 1.0[0.99,1.0] 1.0[1.0,1.0]
To-FLAIR 0.97[0.91,0.99] 0.96 [0.89,0.98] 1.0[0.99,1.0] 1.0[1.0,1.0]

T, 0.96 [0.88,0.99] 0.94[0.86,0.98] 0.99 [0.98,1.0] 1.0[0.99,1.0]
T41-FLAIR 0.96[0.9,0.99] 0.94 [0.88,0.97] 0.99 [0.98,1.0] 1.0 [0.99,1.0]
DWI 0.96 [0.86,0.99] 0.94 [0.80,0.98] 0.99[0.98,1.0] 1.0 [0.99,1.0]
ADC 0.78 [0.55,0.91] 0.74 [0.48,0.89] 0.91[0.79,0.96] 0.97 [0.93,0.99]
log-Jacobian 0.96[0.92,0.98] 0.96 [0.92,0.98] 0.97 [0.94,0.98] 0.98 [0.97,0.99]
MSN N/A N/A 0.81[0.66,0.89] 0.83[0.69,0.90]

Note: Reliability was assessed for six EPImix contrasts as well as the log-Jacobian and MSNs, as Median
[Q1,Q3] ICC(3,1). (Note that the EPImix T4-FLAIR contrast is referred to as the EPImix T1-w contrast/scan

throughout the text.)

stringent test of the reliability and robustness of our rapid processing
approaches (Chen et al., 2018).

We note that we deliberately avoided combining the processing
time and quality into a single metric, which would be used to deter-
mine the selection of an option at each processing step. This would
require placing a numerical weight on the relative importance of each
criterion; for example, ‘time is [half/twice/three times...] as important
as quality’, which is not trivial, or indeed necessary. Consider the
example of bias field correction, as evaluated here: Is the median gain
of 0.011 in output quality (as measured by the Dice coefficient) worth
an added median 6 s of processing time? In this case, we decided that
it is—but crucially, we consider that this is not a decision that it is easy
to automate. Moreover, as discussed at the start of the Section 2,
there are other non-quantifiable factors that may affect the design of
a processing pipeline, such as the necessity for (manual) quality con-
trol and subsequent re-running of processing steps. This would also
be more likely for some steps (e.g., brain extraction, registration) than
others (downsampling, bias field correction). Taken together, we hope
that our quantitative evaluation may serve as a framework to guide
the identification of desired processing steps, to design a customised
fast processing pipeline on a case-by-case basis.

We also did not systematically evaluate all combinations of
processing steps, in part due to the assumption that variation in regis-
tration quality (one of the underlying objective functions) will be rela-
tively smooth along axes corresponding to each processing step
(Lancaster et al, 2018); in other words, the interactions of the
processing steps were assumed to be largely linear. Moreover, our
evaluation was limited to a single algorithm per processing option.
Use of other algorithms or software suites may have resulted in
processing pipelines that run faster and/or result in higher quality reg-
istrations (Klein et al., 2009). In future, the multiverse of processing
steps and algorithms could be more systematically and efficiently
explored using adaptive methods, to simultaneously quantify the per-
formance of different combinations of processing tools and identify
optimal approaches (Dafflon et al., 2020).

Deep learning tools are another promising avenue for further
optimisation of image processing. Such tools can substantially reduce

the runtime of intensive processing steps (e.g., Henschel et al., 2020).

Many of these tools require computationally expensive training on
large datasets or are limited to specific applications, although new
methods are being developed that are relevant to a broad range of
tasks (Isensee et al., 2020). Another recent development is deep-
learning methods trained on synthetic data, which promise to gener-
ate accurate segmentation (Billot et al., 2020) and registration
(Hoffmann et al., 2020) in seconds, without the usual requirements of
large empirical training datasets. The runtime/quality trade-off of
these tools could be benchmarked using the tools presented here.

4.2 | Correspondence between EPImix and single-
contrast scans

We quantified the correspondence between log-Jacobians and T;-w
intensities derived from EPImix and single-contrast scans. Correspon-
dence was generally high, across different spatial resolutions (includ-
ing voxels and ROIs) and higher within participants than between
them, leading to high levels of participant identifiability. For log-Jaco-
bians, global identifiability was highest for regions of the low-
resolution MMP atlas, closely followed by other data resolutions;
however, individual identifiability was similarly high at voxels and
high-resolution regions, but lower for low-resolution regions. For
T4-w intensities, both global and individual identifiability were highest
using unsmoothed GM voxels.

We note that the interpretation and desirability of (individual)
identifiability differs between its application to log-Jacobians and
T,-w intensities. Jacobian maps (of the nonlinear transformation of
individual scans to standard MNI space) encode inter-individual differ-
ences in brain size and shape, and hence high identifiability based on
these maps is desirable. The interpretation of identifiability based on
T1-w scan intensity is more complex, as the aim of registration is to
align tissue intensities between the participant's scan and the tem-
plate (Toga & Thompson, 2001). Here, identifiability values derived
from log-Jacobians and T;-w intensities tended to be inversely
related, which aligns with the interpretation that T,-w contrast
identifiability is undesirable, while Jacobian identifiability is. We also

note that raw scan intensities might be sensitive to noise, including
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known variability due to factors such as scanner site or scan parame-
ters (Shinohara et al., 2014). Methods have been proposed to harmo-
nise intensities across scans, which involve matching distribution
intensities within a reference section of tissue and accordingly
adjusting intensities in other tissue classes (Fortin et al, 2016;
Shinohara et al., 2014). However, such methods assume that variabil-
ity within the reference tissue class is undesirable and thus preclude
hypothesis testing in this tissue. Taken together, our results suggest
that the use of log-Jacobians is preferred for quantitative analyses
such as individual identifiability. High(est) identifiability at the level of
ROIs indicates that this may be the optimal level of spatial resolution
for further analyses of similar data. The specific choice of atlas to be
used, including the spatial resolution of ROIs, will depend on specific
questions—including factors such as the expected spatial extent of
potential abnormalities in clinical studies as well as computational cost
of analyses, which may grow with the number of ROIs considered.

As an additional means of comparing EPImix and single-contrast
scans, we constructed structural covariance networks from regional
log-Jacobians and T4-w intensities, to inspect the feasibility of con-
structing structural covariance networks using rapidly processed
(EPImix) data. In the absence of ground truth, we use high-resolution
T41-w scans from the same participants and scanner as the ‘gold stan-
dard’ to derive these networks, and therefore assume that differences
in structural covariance network organisation are due to the EPImix
sequence missing some of the signal. A particularly useful application
of these networks is the calculation of individual contributions to
group structural covariance, as a single-contrast network biomarker of
disease (Nadig et al., 2021; Saggar et al., 2015). However, further
work is required to disentangle differences between structural covari-
ance networks derived from EPImix and single-contrast T1-w scans, to
apply individual deviation methods to such networks and to establish
the potential practical relevance of such approaches. In particular,
given the modest between-contrast correspondence and apparently
abnormal organisation of structural covariance networks derived from
T1-w scan intensities, structural covariance networks constructed
from regional log-Jacobian values are a more promising avenue for
further work.

An alternative approach for deriving measures of brain connectiv-
ity from EPImix scans relies on MSNs (Seidlitz et al., 2018), con-
structed from within-participant correlations between regional
morphometric features. Here we used six EPImix contrasts as well as
the log-Jacobian to derive individual MSNs. EPImix-derived MSNs
showed relatively weak correspondence to standard MSNs obtained
from FreeSurfer reconstructions of single-contrast T,-w scans (King &
Wood, 2020). This could be due to several factors, including a more
informative nature of the quantitative measures of brain morphology
derived from FreeSurfer (such as cortical thickness or GM volume)
compared to EPImix contrast intensities, more accurate delineation of
ROI boundaries by FreeSurfer and a lower resolution of EPImix com-
pared to single-contrast scans. Nevertheless, our rapidly-derived
MSNs showcase the possibility of constructing individual multi-
contrast brain networks within minutes of participants entering the
Rapidly-derived network estimates

scanner. could potentially

complement other measures in informing adaptive imaging paradigms,
or serve as stand-alone screening tests for diseases affecting brain
connectivity. However, further work will be required to first disentan-
gle factors that affect the (currently limited) correspondence between
EPImix-derived and conventional MSNs, and more importantly, to
ascertain the practical value of both network types in a predictive
(clinical) setting.

We limited our comparison to EPImix and single-contrast T,-w
scans (and corresponding log-Jacobians), due to lack of availability of
high-resolution single-contrast data analogous to other EPImix con-
trasts for the same participants. Further work on developing rapid
processing pipelines for additional sequences would be valuable, along
with quantitative evaluations of within-participant correspondence
between other EPImix contrasts and corresponding single-contrast
scans. The methods used here to compare T4-w scans within partici-
pants can easily be translated to these other sequences, or further
used to compare quantitative measures derived from other rapidly
acquired scans. This includes other rapid multicontrast sequences
(Polak et al., 2020) as well as contrasts acquired on the recently devel-
oped low-field Hyperfine scanner (Sheth et al., 2020), both of which
could be compared to their high-resolution counterparts using the
tools described herein.

We note that an inherent limitation of data from the EPImix
sequence (Skare et al., 2018) is a reduced quality compared to analo-
gous single-contrast scans; for example, the EPImix acquisition is fast
in part due to its reduced matrix size. However, such sequences are
not intended to replace high-resolution data; instead, they might serve
as rapid ‘screening-tests’, or for further planning of conventional MRI
acquisition (Skare et al., 2018) - including in an adaptive acquisition
paradigm (Cole et al., 2019).

43 | Towards adaptive imaging

The processing pipeline explored here is fast enough to be used while
participants are still in the scanner, satisfying one of the key condi-
tions for practical implementation of adaptive imaging (Cole
et al., 2019). For the specific development of adaptive multimodal
imaging, another requirement is a criterion for selecting which imaging
modality or contrast to acquire next, based on hitherto acquired rap-
idly processed data.

One such criterion can be the selection of modalities predicted to
show greatest deviations relative to large normative datasets
(Marquand et al., 2019), based on previously acquired scans as well as
knowledge of covariance across modalities. Thus, it would be valuable
to use large multimodal normative datasets, such as CamCAN (Taylor
et al., 2017), Human Connectome Project (Van Essen et al., 2012) or
UK Biobank (Miller et al., 2016), to investigate both normative devia-
tions of rapidly processed data across modalities as well as covariance
between modalities across participants. In this context, repetition of
analyses across spatial scales, such as voxels and ROls, could generate
insights into the potential extent (and therefore nature) of

abnormalities.
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As a proof-of-concept of adaptive acquisition, we propose to use
rapid processing and analysis of EPImix scans to determine which of
the six contrasts show the greatest deviations from a normative popu-
lation (Marquand et al., 2019). Subsequently, and while the participant
is still in the scanner, these contrasts would be re-acquired at higher
resolution using single-contrast sequences, in the order automatically
determined by our rapid analysis algorithm. Subsequent ‘off-line’ ana-
lyses could confirm the accuracy of the order of contrasts by extent
of deviation from the norm, previously determined in real-time.

Our suggested proof-of-concept application of EPImix (or similar
rapidly-acquired data) for adaptive imaging focuses on the selection
of MRI contrasts or modalities, in line with initial proposals by Cole
et al. (2019). However, adaptive imaging could also be applied within
individual sequences, to optimise scan factors such as EPI readout,
acceleration or inversion time, and adjust protocols to different
populations to achieve optimal image quality.

Practical implementation of adaptive multimodal imaging would
enable personalised neuroimaging examinations of patients. This
would potentially lead to reduced scanning time and cost and conse-
quently greater patient comfort, as well as to a decreased likelihood
of recalling patients for further examinations (Cole et al., 2019). An
added benefit of adaptive methods in the research context is the
reduced likelihood of questionable practices such as P-hacking or
SHARKIing (selecting hypotheses after results are known; Poldrack
et al., 2017), due to the combination of data acquisition and analysis
in a closed loop (Lorenz et al., 2017).

5 | CONCLUSION

In summary, we explored the impact of several rapid processing steps
on the runtime and quality of registration, and used results to inform
the choice of steps forming a minimal processing pipeline. Subse-
quently, we quantified the correspondence between rapidly
processed multicontrast EPImix and single-contrast T4-w scans, dem-
onstrating that substantial quantitative information can be reliably
extracted from the EPImix sequence in minutes. Finally, we explored
the use of EPImix for the rapid construction of MSNs. Our work con-
stitutes a step towards adaptive multimodal imaging, where real-time
scan processing and analysis can inform tailoring of neuroimaging

examinations to individual patients.
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